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Particles and Holes in the Unitary Group Method

Wen Zhen-yi*

Department of Physical Chemistry, H. C. Qrsted Institute, University of Copenhagen, Copenhagen, _
Denmark

Based on the definition for complementary Gel’fand states, we proved the
simple relationship between the matrix elements of particle states and those
of hole states by unitary calculus.
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1. Introduction

It is a well-known principle that a partly-filled shell of N particles can be treated
either as N particles or as A-N holes, where . is the total capacity of the shell.
According to this principle a configuration of N particles and a configuration of
N holes will produce identical multiplet terms and have the same energy interval
between the various terms of both configurations. In fact this principle can be
derived by means of the relations which connect Hamiltonian matrix elements
between hole states with those between particle states. The latter may be called
the complementary theorem [1]. In the theory of atomic spectra, for free atoms
or ions Shortley [2] and Racah [3] found a complementary theorem, which can
easily be generalized to weak ligand fields. For strong ligand fields a similar
theorem was obtained by Griffith through a long derivation [4]. Noting that
there are unitary transformations among the wavefunctions of strong, weak fields
and free ions, it is a straightforward task to prove the equivalence of the
complementary theorems for the previous cases, as Tang Au-chin et al. have
done [1].
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In recent years some merits of the unitary group method have been manifested.
The peculiarity of the method is

1) Many-particle wavefunctions with arbitrary symmetries are written as linear
combinations of Gel'fand bases, the canonical bases of a unitary group.

2) Interactron operators are expressed in terms of the generators of the unitary
group.

Since general, easily programmable expressions for the matrix elements of
generators in the Gel’fand bases are available, this method is developing into
an elegant and effective procedure for large scale CI calculations [5] as well as
for ligand field theory.

The main purpose of this short note is to try to add a little more power to the
unitary approach by proving a complementary theorem based on earlier work [6].

Here we will prove that
(Vr|#H|Vr)=KSrr (¥ |#|¥y,), (1)

where 5 is an interaction operator. The minus sign is taken for single particle
operators and the positive sign for double particle operators. 7 is a phase factor
which indicates the oddness or evenness of single particle operators with respect
to tlme reversal For an odd operator (e.g. [ § etc), n=—1, otherwise n =1
(e.g. [+ 8, Vo etc.), but for double particle operators 7 is always equal to 1.
In the formula (1) ¥, and ¥, are Gel'fand states coming from less-than-half-
filled configurations (e.g. #3' e¢”, m+n=<5) and hereafter they will be called
L-Gel’fand states or L-states (see the next section); Wg-and ¥ are the Gel'fand
states coming from the corresponding or complementary more-than-half-filled
configurations (e.g. 157 e* ™) and they will be called R-Gel'fand states or
R-states. K is a constant for both complementary configurations. By using
formula (1), we can obtain the required relations for free ions and for weak,
intermediate and strong fields. Let us take the strong octahedral field as an
example. In reference [6], strong field wave functions adapted with irreps of the
group O are expressed as

V(3 e", ¥ ' TMMa) =Y a; ¥;. 2)
If we write the correspond{;ng function in the complementary configuration as

V(s " e* ™", ¥ ' TM.Ma) = zaRpr, 3)
where

ar = ar. 4)

From Eq. (1), then we have
<,\I,(t6 me4 n 2s +1FM Mla/)l%hp(tﬁ me4 n 2s+1FMMa)>

= ) aR“R'(‘I’R'I%I\PR)
R.R’
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= Y aragr[Kérr £ n{Vr|¥#|¥L)]

R,R’
=Kérrr £ (¥ (17 ", * 'T'MM'a")| K|V (5 ", * ' TM,Ma)), (5)

which is the usual form of the complementary theorem for strong fields.

2. The Definitions of L- and R-GePfand States

It can be proved [7] that two irreps of the U(n) (strictly SU(n)) group are
equivalent if the Young shapes corresponding to them can be fitted together to
form a rectangle, i.e.

[/\1A2 Cee /\n]E[Al—Am )tl—A,,‘l, ey A1 A, 0] (6)

The rectangle is, say, [1"]if A; =1 or[2"]if A; = 2. But here we are only interested
in [2"], because it is [2"] that relates to a closed shell, and moreover there is
another theorem' which ensures the equivalence of irreps [1"] and [2"].

The relationship between two irreps like (6) exactly represents that between the
irreps of L- and R-Gel'fand states. For d orbitals the relationship gives, for
example,

[21]=[21000]=[22210]=[2221],

which means that if the Young shape for L-states is [21], the Young shape for
R-states should be [2221].

Now we use Paldus tableaux to express Gel’fand states:

\PLZ

a.,»l.),-.ci>, (7

where a;, b; and ¢; are integers representing the numbers of the entries m; which
are equal to 2, 1 and 0. Exchanging a; and ¢; in every row of the tableau of ¥,
which is equivalent of replacing particles with holes or vice versa, we obtain

Pr=

Cibiai> = a§b§C§>, (8)

where a; =c;, b; = b; and ¢ = a; are the numbers of the entries m}; having value
2,1 and 0 in ¥y. It is obvious that the single-particle orbitals in Wy are exactly
complementary to those in W in the sense that the totality of single particle
orbitals in ¥; and ¥y forms a closed shell, We define

\I,R - (_1)(2,4951'*2,»5,_1')/2\1,5. (9)

The summations in (3, 7) and (%, /) are over the labels of orbitals in ¥; and
¥, , respectively.

[AiAz .. A =[A1—a, A3—a,..., A, —a], where a is any integer such that A,, —a =0.
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For example,

11 3

11 2

wL=§”]=111

KN 10 1

010

31 1

‘;Z 2 1 1

\If,;=6 ={1 1 1

10 1

£ ] 010
thus

2 ey —
WR=(_1)(€+17+{+ 6+2e—¢-n {)/Zq,i

in the last step we used the convention in reference [6].

3. Lemma
(Vi |Ey|¥r) = (_1)i~j+l<\pL’|Eji|’\PL> (10)

where i and j are labels of the single particle orbitals, and E;; are the generators
of U(n).

Proof: Let us assume that j>i. it can easily be verified from appendix B of
reference [6] that

(q’i'lEi,i+1|‘I’£) = <\I'L’|Ei+l,i|WL)- (11)
Using the commutation rules for the generators of unitary group,
Eiiv2=[Eii+1, Eir1,i+2]
=[E;i+1Eir1,i42— Eiv1,i42E1i41)
and
Eiv2i=[Eis2,+1, Eiv1,1]
= —[Ei+1,iBiva,01 — Eivg,iv1Eis1,]
We get
(TIZ"Ei,i+2|‘I’IZ> = (Yr|(Eiir1Eis1,iv2~ Eiv1,i02E1141)|Y1)
=(V|(Ei+1,iEis2,i41~ Eir2,i+1E141,)| Y1)
= —(‘I’L'|Ei+2,i|‘I’L)-

As a result lemma (10) is obtained by induction up to j.
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4. The Proof of the Complementary Theorem
a. Single particle operators:
N n
H, = 21 ht=z<i|hl'j>Eij- (12)
t= ij
The matrix element between L-Gelfand states is
(V|96 =X (il f XL Ey| ¥ L) (13)
Ly
it is proved in appendix A of Ref. [6] that the matrix elements of single particle
operators between the Gel’fand states will vanish except when one of the states
differs from the other by at most one orbital. Suppose that ¢; € ¥, and ¢, € ¥

are the different orbitals, from the definition of complementary states and the
lemma we have

<\I,R’ Eij ‘PR> - (_1)—(Z,-re,:»i’—Z,.rEL'iLZ,»e,:.i+2j€,j)/2<\Pl}' Eij \PI_:> (14)
ieR’ jeR iel’ jeL
= (-—1)i~i< \I,é', Eii q’é>
iel' jeL
= —<\1rL. E;; qu>. (15)
jeL' ieL
Thus the non-diagonal matrix elements are
(V|90 ¥r) =X (il |IX V= Ey[¥r)
Ly
=N Z (GhAiX Y L B[P L)
1)
= — (V|| ¥L). (16)

to find the diagonal elements we consider

(Vr|3:|Ur)+ (VLI VL)
=2 (tlhliXVr|Eal ¥ r)+ X (il [iXW L |Ea WL
— (iRl + )

=2 Y (ilh4li)

=({2"]#.2"D
=K1,
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where n; is the occupation number of ¢; in ¥y, n; =2—n; is the occupation
number of ¢; in Wg, K1=2Y;{i|hi|i) is a constant for a definite single particle
operator and closed shell. The diagonal elements, therefore, become

<‘I’R|%1]‘I’R>=K1_(\I'Ll%llq’ﬁ- a7
for example for the octahedral crystal field,
%1 acb = 1

K, =2[3 X(—4Dq)+2 x6Dq]=0,
OI,R'] Voct'\I’R> = - <qu’] Voct|lI,L>-
b. Double particle operators:
N n
H= % . ho =3 %l<ik|h12|jl>(EijEkl — 8i;Eu). (18)
tu= ij, ks

Using the results for single particle operators discussed above it is straightforward
to prove that

<‘I'R'|%2]‘I’R>=<‘I’L'|%2I‘I’L), (19)

which is the complementary relation for non-diagonal matrix elements between
Gel’fand states. Here we only give the proof for the case in which two Gelfand
states are different from each other by two orbitals. From formula (A.6) of
Ref. [6], it follows that

1
< \I’R' %2 ‘IIR> = [(lk|h12|]l>< q’R’ EijEkl \I’R>
ikeR’ jleR nin; i,keR’ LleR
+iklisali){ Vi | Ebi| |, (20)
i,keR ileR

where #; is the number of ¢; in ¥ and nj is the number of ¢; in ¥g. To prove
formula (19), it is necessary to prove the following formulae:

<‘I’R' E;Eq ‘I’R>=<\I’L' E;En| ¥, >, 21D
ikeR’ ile R jileLl! i,keL
and
(Ve |Eo| w5) =( ¥e | EuBu| v ). 22)
i,keR' ileR ilel’ i,keL.

Using Eq. (15), we have

<‘I'R' EyE ‘I’R> < >< Ekl ‘PR>
ikeR’ ileR tER leR
L” ]eL kel

E.Ey

<L
leL’

i, ksL>
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This is the proof for Eq. (21), and similarly for Eq. (22). Formula (19) is then
proved.

Next we determine the relation between diagonal elements. We consider the
difference

A=(Vr|F|VUR)— (V|| V)

1 .. .
=3 [Z (2] if Y R|EE; |V r)
L]

+3 GlhsaliiX RN E B ~ El Vi) |
1 .. .
—5 ['Z] <l]'h12l1]><‘I’L|Eiz’Ejj|q’L>
+Z_ (il iV L|(ExE;; —Eii)l‘l’ﬁ]
i
= -21- [,Z] (flhialif)(nin} — nn;)

X Giflhaljiy=ni )

Substituting n; =2—n;, nj =2—n; into the previous equation, the difference
becomes

A = F (2G| haalif) — (Gl haalji)]
—Z_ (n:+ np)[{if | haalif) —%(l‘]'lhlzlﬁﬂ

= (2" 196,127 D = X nil 2051 haalif) — Gjlhazlid]

where the first summation ([2"]|%|[2" ) = =, [2(if|h12]if) — (ij| h12]ji)]is the matrix
element for the closed shell and is a constant, the second summation only depends
on the orbitals in the L-state and is also a constant for a pair of complementary
configurations. Hence the difference is a constant for a definite configuration, i.e.

A:(‘I’Rl%zl‘l’ﬂ—(\l’Ll%zl‘I’L)=K2, (23)
or

<\IIR'%2’\PR>:K2+<\I’Ll%21\lf]_>. (24)

For example, if #,=2%,,1/r, is the electrostatic interaction, then for a strong
octahedral field we find that

([2”]|tZ %][2"])=45A—7OB+35C, (25)
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where A, B and C are the well-known Racah parameters. In deriving formula
(25) we have used the reduced matrix elements given in table A26 of Ref. [4].
Furthermore, since ¢, and e electrons contribute the same to a closed shell, we
find for any ¢; that

mset Lo pen g I S
Y 2G| iy = X' Gl — iy + X G| — |ii)
i ria j riz iz
=9A—-14B+7C, (26)

where dashes mean that in the sum j = is ruled out. Replacing K, in Eq. (24)
with Egs. (25) and (26), we get

<\I’R’|z "1- |\I'R) = (5 —N)(9A - 14B +7C)5R’R

tu 'y

S ). @7)

tu 'y
where N = the electron number in ¥;.

Finally combining Eqs. (16), (17), (19) and (24), we obtain formula (1), complet-
ing the proof.
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