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Based on the definition for complementary Gel ' land states, we proved the 
simple relationship between the matrix elements of particle states and those 
of hole states by unitary calculus. 
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1. Introduction 

It is a well-known principle that a partly-filled shell of N particles can be treated 
either as N particles or as Y-N  holes, where N is the total capacity of the shell. 
According to this principle a configuration of N particles and a configuration of 
N holes will produce identical multiplet terms and have the same energy interval 
between the various terms of both configurations. In fact this principle can be 
derived by means of the relations which connect Hamiltonian matrix elements 
between hole states with those between particle states. The latter may be called 
the complementary theorem [1]. In the theory of atomic spectra, for free atoms 
or ions Shortley [2] and Racah [3] found a complementary theorem, which can 
easily be generalized to weak ligand fields. For strong ligand fields a similar 
theorem was obtained by Griftith through a long derivation [4]. Noting that 
there are unitary transformations among the wavefunctions of strong, weak fields 
and free ions, it is a straightforward task to prove the equivalence of the 
complementary theorems for the previous cases, as Tang Au-chin et al. have 
done [1]. 
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In recent years some merits of the unitary group method have been manifested. 
The peculiarity of the method is 

1) Many-particle wavefunctions with arbitrary symmetries are written as linear 
combinations of Gel 'fand bases, the canonical bases of a unitary group. 

2) Interactron operators are expressed in terms of the generators of the unitary 
group. 

Since general, easily programmable expressions for the matrix elements of 
generators in the Gel ' fand bases are available, this method is developing into 
an elegant and effective procedure for large scale CI calculations [5] as well as 
for ligand field theory. 

The main purpose of this short note is to try to add a little more power to the 
unitary approach by proving a complementary theorem based on earlier work [6]. 

Here  we will prove that 

<'VR'I~I'vR > = K6R'R + r/(WL'[~IWL>, (1) 

where ~ is an interaction operator.  The minus sign is taken for single particle 
operators and the positive sign for double particle operators. ~ is a phase factor 
which indicates the oddness or evenness of single particle operators with respect 
to time reversal. For an odd operator  (e.g. ~, g etc.), ~/= - 1 ,  otherwise r /=  1 
( e . g . f .  & lVoct etc.), but for double particle operators r/ is always equal to 1. 
In the formula (1) WL' and * L  are Gel ' fand states coming from less-than-half- 
filled configurations (e.g. t~ e n, m + n  ~< 5) and hereafter  they will be called 
L-Gel ' land states or L-states (see the next section); q~R, and WR are the Gel 'fand 
states coming from the corresponding or complementary more-than-half-filled 
configurations (e.g. t6-me 4-n) and they will be called R-Gel ' land states or 
R-states. K is a constant for both complementary configurations. By using 
formula (1), we can obtain the required relations for free ions and for weak, 
intermediate and strong fields. Let  us take the strong octahedral field as an 
example. In reference [6], strong field wave functions adapted with irreps of the 
group O are expressed as 

* ( t ~  e", a'+IFM, Ma)  = X aL ~L. (2) 
L 

If we write the corresponding function in the complementary configuration as 

i . t r  6 - - m  4 - n  2 s + l ~ =  . . . \ tt2 e , 12vi,2via) = Y~ aRCh, (3) 
R 

where 

aR = aL. (4) 

From Eq. (1), then we have 
2 s ' + l  p t r p 6 - - r n  4 n 2 s + 1  (~F(t 6-"  e 4-", F M , M  a )]g[',F(t2 e , FM~Ma)) 

= X aRaR'(~R'J~Ixt'R) 
R , R '  
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= E aRaR'[KSRn'  + rl<~L'IYg]~L>] 
R , R '  

" 2 " + I F ' M ' M ' a '  ? l ( ~  t m " =K6nR'+rt<~t( t '~  e , ~ ) I ( 2 e ,2"+IFM,  M a ) ) ,  

which is the usual fo rm of the c o m p l e m e n t a r y  t h e o r e m  for  s t rong fields. 

(5) 

2. The Definitions of L- and R-Gel'land States 

It  can be p roved  [7] that  two irreps of the U ( n )  (strictly S U ( n ) )  group  are 
equivalent  if the Young  shapes  cor responding  to t h e m  can be fitted toge the r  to 
fo rm a rectangle ,  i.e. 

[/~1~2 . . ,  ~ n ] ~  [h l - - /~n, ~l--/~n--1 . . . . .  ~ 1 - A 2 ,  03. (6) 
T h e  rec tangle  is, say, [1"] if hi  = 1 or  [2"] if/~1 = 2. But  here  we are only in teres ted  
in [2"], because  it is [2"] that  re lates  to a closed shell, and m o r e o v e r  there  is 
ano the r  t h e o r e m  1 which ensures  the equivalence  of irreps [1"] and [2"]. 

The  re la t ionship  be tween  two irreps like (6) exact ly represents  that  be tween  the 
irreps of L-  and R - G e l ' f a n d  states�9 For  d orbitals  the re la t ionship gives, for  
example ,  

[21] --- [21000] -= [22210]  -= [2221], 

which means  that  if the Young  shape  for  L-s ta tes  is [21], the Young  shape  for  
R-s ta tes  should be  [2221]. 

N o w  we use Paldus tab leaux  to express  Ge l ' f and  states: 

�9 L-- FL;;, ) , 

where  a~, bi and ci are integers represen t ing  the numbers  of the entr ies  rnjl which 
are  equal  to 2, 1 and 0. Exchanging  a~ and c~ in every  row of the tab leau  of ~L,  
which is equivalent  of replacing part icles with holes or  vice versa,  we obta in  

~ 1 4 9  

�9 c;La,l la  :c  I, 

where  a'i = ci, bl = bi and cl = ai are the number s  of the entries m}~ having value 
2, 1 and 0 in ~z:. It  is obvious  that  the s ingle-part icle  orbitals in ~rt: are exact ly 
c o m p l e m e n t a r y  to those in ~ L  in the sense that  the total i ty  of single part icle 
orbitals  in ~ L  and ~ s  forms  a closed shell. We  define 

~ n  = ( - 1 )  (z '~ z'~LJ)/2qzc. (9) 

The  summat ions  in (~i~s i) a n d  (~ i~Lf )  are over  the labels of orbitals  in ~ s  and 
~L,  respect ively.  

i [A1A 2 . .. A,] ~-[A 1 -a ,  A 2 - a  . . . .  , An -a ] ,  where a is any integer such that An - a  t> 0. 
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For example, 

Ili) 1 1  

~ L = ~  ~]= 1 1 
1 0 

0 1 li) ~' n 2 1  
~ = . ( .  o.  1 1  

O e 1 0 

e 0 1 

thus 

"tit R = ( _  l ) (ti+n+'~ + EO+ Ee-tJ-n-~)/2xtt  ~ 

= - ~ s  

in the last step we used the convention in reference [6]. 

3. Lemma 

(XI/r-.,IEql~Irs = (--1) i-i+1(~It L, IEiil~t L) (i0) 

where i and ] are labels of the single particle orbitals, and E 0 are the generators 
o f  U(n). 

Proof: Let us assume that ] > i .  it can easily be verified from appendix B of 
reference [6] that 

<~'~,lE,,,+,l~'c> = <~'L'IE,+I,,IVL>. (11) 

Using the commutation rules for the generators of unitary group, 

Ei. ,+2 = [Ei,~+l ,  E i §  

= [ E i , , + l E i + l , i + u -  Ei+l,i+2Ei, i+l) 

and 

= - [Ei+l,iEi+2,1+l - Ei+u,i+lEi+l.~] 

We get 

('I" L, IE,,, + 21'I' c> = < ~ C,I ( E~,I + ~ E ,  + ~,, + 2 - E ,  + x,, + 2 E,, ,  + O I ~  D 

= (XltL, l(Ei+l,iEi+u,i+ x -Ei+2,i+lEi+l, i ) lxl2"L) 

= - < q ' ~ ' l E , + 2 , , l q ' L ) .  

As a result lemma (10) is obtained by induction up to ]. 
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4. The Proof of the Complementary Theorem 

a. Single particle operators: 

~ = Y h, ( i lhl] i)E~ i. 
t = l  i,./ 

The matrix element between L-Gelfand states is 

(12) 

( ~ L ' I ~ I I * L )  = E (iIhaI/)('~L'IE,ZN*L) (13)  
t,1 

it is proved in appendix A of Ref. [6] that the matrix elements of single particle 
operators between the Gel 'fand states will vanish except when one of the states 
differs from the other by at most one orbital. Suppose that ~bi ~ ~L and ~b i ~ ~L' 
are the different orbitals, from the definition of complementary states and the 
lemma we have 

- ( Z ' ,  ~tS i ' - Z i ,  ~L  ] ' - -Z .~f .  i + Z i a L ] ) / 2  

i e L '  i e l ~ !  

~ ] E L '  ! ! i E L I  

(14)  

(15)  

Thus the non-diagonal matrix elements are 

(~,~,l~d'I*R) = E ( i ] h l ] j ) ( x l t R ' ] E ~ j l W R )  
l , ]  

= - n E (ilhlli><WL'lE*,]q~L) 
1,1 

= - n ( ' ~ L ' l ~ d ~ L ) .  

to find the diagonal elements we consider 

(16) 

= E (ilhdi)(~R IEi, IRrR) + E ( i lh l l i ) (~LlE. lqtL)  
i i 

= 2  (iJhlli)(nl + ni) 
i 

= 2 E (ilh,[i) 
i 

= ([2'~31~,'1112-3) 

= K1 ,  
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where ni is the occupation number of ~bl in WL, n~ =2- -n i  is the occupation 
number of ~bl in 'u K1 = 2 521 (ilhl]i) is a constant for a definite single particle 
operator and closed shell. The diagonal elements, therefore, become 

(~R [~I]~R) = K1 - (~L] ~II~L>. (17) 

for example, for the octahedral crystal field, 

~ l =  Voct, r l=l  

K1 = 2[3 x ( -  4Dq) +2 x 6Dq] = O, 

( *  R,I r l*  = fZoctl L . 

b. Double particle operators: 

N 

Yg2 = E h,~=�89 ~ (iklhazljl)(EejEkt-6kjE,,). (18) 
t,u= l i,j,k,l 

Using the results for single particle operators discussed above it is straightforward 
to prove that 

< R,l 21,I,e > = <'I'L'I (19) 

which is the complementary relation for non-diagonal matrix elements between 
Gel ' land states. Here we only give the proof for the case in which two Gelfand 
states are different from each other by two orbitals. From formula (A.6) of 
Ref. [6], it follows that 

~ i , k ~ R ' !  j , l ~ R I  nil't i i , k~R'  j , l~R  

+(iklh1211])( grR' E,Ek, * R ] ,  (20) 
~ i , k ~ R '  j , l~R  

where n~ is the number of ~b~ in ~ ,  and n] is the number of ~b i in ~R. TO prove 
formula (19), it is necessary to prove the following formulae: 

and 

Using Eq. (15), we have 

i , k ~ R '  j I~R  j ~ R " I  ~ k e R '  ~IYR 

j , l ~ L  i, k e L I  

(21) 

(22) 
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This is the proof for Eq. (21), and similarly for Eq. (22). Formula (19) is then 
proved. 

Next we determine the relation between diagonal elements. We consider the 
difference 

1 [E (iilhldS)(WRlE.EnIWR) = - -  

+ Z (iflh12[fi)(qrn)(EiiEii - Eu)IaP'R )] 
id 

1 [E (il[h12[ij)(xPLlEuEiflqtL) 
2 Li, j 

+ ~ ( i j lh12[j i ) (XIr  L l (E i jE is  - Eu)[alYL)] 
i,i 

=1[i,~(if]h12]ij}(n'n~-nini) 

+ ~. (if[h12]]i)( -- n'i + ni)] 
id 

Substituting n~ = 2 - n i ,  n~ = 2 - n j  into the previous equation, the difference 
becomes 

A = ~ [2(/] ']h12]t]) --  (glh~2[ji)] 
i,j 

- 2 (ni + nj)[(6lh 121//') - 1(if[h121fi)] 
i,j 

= ([2" ]IYCz[[2" ]) - E m[2(ijlhlz]if) - (ij[h121ji)] 
t , ]  

where the first summation ([2"]1~2[[2"]) = s ) - (iflh121ji)] is the matrix 
element for the closed shell and is a constant, the second summation only depends 
on the orbitals in the L-state and is also a constant for a pair of complementary 
configurations. Hence the difference is a constant for a definite configuration, i.e. 

A = (xlrn [gg2J~n ) - (XI*LIYfeIXP'L) = K2, (23) 

o r  

(24) 

For example, if 0c~2 = s is the electrostatic interaction, then for a strong 
octahedral field we find that 

1 ][2"1) = 45A - 7 0 B  +35C, <[2"'11~ r (25) 
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w h e r e  A ,  B and  C a re  the  w e l l - k n o w n  R a c a h  p a r a m e t e r s .  In  der iv ing  f o r m u l a  
(25) we have  used  the  r e d u c e d  ma t r ix  e l emen t s  g iven in t ab le  A 2 6  of Ref .  [4]. 
F u r t h e r m o r e ,  s ince t2 and  e e l ec t rons  con t r i bu t e  the  s ame  to a c losed  shell ,  we  
find for  any  ~bl tha t  

Y~'2(ij[ l l i j ) -Y / ( i j [  1_ ]ii)+ Y~ (iil 1 ]ii) 
j 1"12 j /'12 

= 9 A  - 14B + 7 C ,  (26) 

w h e r e  dashes  m e a n  tha t  in the  sum j = i is ru led  out.  R e p l a c i n g  K2 in Eq.  (24) 
wi th  Eqs.  (25) and  (26), we ge t  

( ~ R ' [ ~  1 [~R) = (5 - N ) ( 9 A  - 14B + 7C)SR'R 
t,u rtu 

+ (*L,I E Z I'lL). (27) 
t,u rtu 

w h e r e  N = the  e l ec t ron  n u m b e r  in ~L.  

F ina l ly  combin ing  Eqs.  (16), (17), (19) and  (24), we ob t a in  fo rmu la  (1), c o m p l e t -  
ing the  proof .  
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